SNP-based linkage analysis in extended pedigrees: comparison between two alternative approaches.
نویسندگان
چکیده
BACKGROUND Linkage analysis on extended pedigrees is often challenged by the high computational demand of exact identity-by-descent (IBD) matrix reconstruction. When such an analysis becomes not feasible, two alternative solutions are contrasted: a full pedigree analysis based on approximate IBD estimation versus a pedigree splitting followed by exact IBD estimation. A multiple splitting (MS) approach, which combines linkage results across different splitting configurations, has been proposed to increase the power of single-split solutions. METHODS To assess whether MS can achieve a comparable power to a full pedigree analysis, we compared the power of linkage on a very large pedigree in both simulated and real-case scenarios, using variance components linkage analysis of a dense SNP array. RESULTS Our results confirm that the power to detect linkage is affected by the pedigree size. The MS approach showed higher power than the single-split analysis, but it was substantially less powerful than the full pedigree approach in both scenarios, at any level of significance and variance explained by a quantitative trait locus. CONCLUSION The MS approach should always be preferred to analyses based on a single split but, when adequate computational resources are available, a full pedigree analysis is better than the MS analysis. Rather than focusing on how to best split a pedigree, it might be more valuable to identify computational solutions that can make the IBD estimation of dense-marker maps practically feasible, thus allowing a full pedigree analysis.
منابع مشابه
Linkage analysis of extended high-risk pedigrees replicates a cutaneous malignant melanoma predisposition locus on chromosome 9q21
Three predisposition genes have been identified for cutaneous malignant melanoma (CMM), but they account for only ∼25% of melanoma clusters/pedigrees. Linkage analyses of melanoma pedigrees from many countries have failed to identify significant linkage evidence for the remaining predisposition genes that must exist. The Utah linkage analysis approach of using singly informative extended high-r...
متن کاملLinkage analysis with an alternative formulation for the mixed model of inheritance: the finite polygenic mixed model.
This paper presents an extension of the finite polygenic mixed model of Fernando et al. (1994) to linkage analysis. The finite polygenic mixed model, extended for linkage analysis, leads to a likelihood that can be calculated using efficient algorithms developed for oligogenic models. For comparison, linkage analysis of 5 simulated 4021-member pedigrees was performed using the usual mixed model...
متن کاملComparison of two QTL mapping approaches based on Bayesian inference using high-dense SNPs markers
To compare different QTL mapping methods, a population with genotypic and phenotypic data was simulated. In Bayesian approach, all information of markers can be used along with combination of distributions of SNP markers. It is assumed that most of the markers (95%) have minor effects and a few numbers of markers (5%) exert major effects. The simulated population included a basic population of ...
متن کاملComparison of GIST and LAMP on the GAW15 simulated data
After genetic linkage has been identified for a complex disease, the next step is often fine-mapping by association analysis, using single-nucleotide polymorphisms (SNPs) within a linkage region. If a SNP shows evidence of association, it is useful to know whether the linkage result can be explained in part or in full by the candidate SNP. The genotype identity-by-descent sharing test (GIST) an...
متن کاملShared genomic segment analysis. Mapping disease predisposition genes in extended pedigrees using SNP genotype assays.
We examine the utility of high density genotype assays for predisposition gene localization using extended pedigrees. Results for the distribution of the number and length of genomic segments shared identical by descent among relatives previously derived in the context of genomic mismatch scanning are reviewed in the context of dense single nucleotide polymorphism maps. We use long runs of loci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human heredity
دوره 78 1 شماره
صفحات -
تاریخ انتشار 2014